Applied Picard-Lefschetz Theory

· Mathematical Surveys and Monographs Book 97 · American Mathematical Soc.
Ebook
324
Pages

About this ebook

Many important functions of mathematical physics are defined as integrals depending on parameters. The Picard-Lefschetz theory studies how analytic and qualitative properties of such integrals (regularity, algebraicity, ramification, singular points, etc.) depend on the monodromy of corresponding integration cycles. In this book, V. A. Vassiliev presents several versions of the Picard-Lefschetz theory, including the classical local monodromy theory of singularities and complete intersections, Pham's generalized Picard-Lefschetz formulas, stratified Picard-Lefschetz theory, and also twisted versions of all these theories with applications to integrals of multivalued forms. The author also shows how these versions of the Picard-Lefschetz theory are used in studying a variety of problems arising in many areas of mathematics and mathematical physics.In particular, he discusses the following classes of functions: volume functions arising in the Archimedes-Newton problem of integrable bodies; Newton-Coulomb potentials; fundamental solutions of hyperbolic partial differential equations; and, multidimensional hypergeometric functions generalizing the classical Gauss hypergeometric integral. The book is geared toward a broad audience of graduate students, research mathematicians and mathematical physicists interested in algebraic geometry, complex analysis, singularity theory, asymptotic methods, potential theory, and hyperbolic operators.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.